Autorenarchiv

Vortrag im Rahmen des DK-Seminars des Karl Popper Kollegs von Dr. Ralf Hielscher (TU Chemnitz)

Dienstag, 21. Februar 2017 14:23

Einladung zum Gastvortrag im Rahmen des DK-Seminars des Karl Popper Kollegs von

Dr. Ralf Hielscher

(TU Chemnitz)

zu dem Thema

Mathematical challenges in analysis of EBSD  images

Prof. Joaquim Júdice an der TeWi

Dr. Ralf Hielscher an der TEWI

Ort: I.2.01

Zeit: Mittwoch, 15.03.2017, 11:00 Uhr s. t.

Abstract:
Electron backscatter diffraction (EBSD) is an imaging modality in material science where an electron beam is used to locally resolve the crystalline structure in a polycrystalline material. In a first step for each spot on the specimen diffraction patterns, so called Kikuchy pattern, are measured. From these Kikuchy pattern information about the type of the local crystal structure as well as about their alignment are extracted. This process is called indexing. After indexing one ends up with an image with values being rotations representing the local orientation of the crystals at the surface of the material.
In this talk we cover several challenges associated with the analysis of EBSD data, including the indexing of the Kikuchy pattern, the colorization of rotations modulo crystal symmetry, the determination of the mean of rotations modulo symmetry, the segmentation of EBSD images into grains and the denoising of EBSD images.

Share

Thema: Institut, MATH, Veranstaltung | Kommentare (0) | Autor:

Einladung zum Vortrag von Tsiry Randrianasolo

Montag, 12. Dezember 2016 17:04

Einladung zum Gastvortrag im Rahmen des DK-Seminars des Karl Popper Kollegs von

Tsiry Randrianasolo

(Montanuniversität Leoben)

zu dem Thema

From Navier-Stokes Equations to Stochastic Navier-Stokes Equations

Prof. Joaquim Júdice an der TeWi

Tsiry Randrianasolo an der TEWI

Ort: I.2.01

Zeit: Mittwoch, 21.12.2016, 11:30 Uhr s. t.

Abstract:

In this talk we give a brief introduction into fluid dynamics by Euler and incompressible Navier-Stokes equations. Small scale perturbations are present in fluid motion, especially when the viscous forces are small compared to inertial forces. It is reasonable to introduce a random body force to capture this perturbation. From this, we will explain how the stochastic incompressible Navier-Stokes equations can be derived from its deterministic equivalent by using the central limit theorem and the large deviation principle. To conclude, we depict the main issue one can meet when a numerical approximation on these stochastic equations are performed.

Share

Thema: Institut, MATH, Veranstaltung | Kommentare (0) | Autor: